If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-80x+35=0
a = 7; b = -80; c = +35;
Δ = b2-4ac
Δ = -802-4·7·35
Δ = 5420
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5420}=\sqrt{4*1355}=\sqrt{4}*\sqrt{1355}=2\sqrt{1355}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-2\sqrt{1355}}{2*7}=\frac{80-2\sqrt{1355}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+2\sqrt{1355}}{2*7}=\frac{80+2\sqrt{1355}}{14} $
| -2(3t-5)+3t=8t-6 | | 477=14-3n | | 4x-16=2-x | | g13=234 | | 100^2t=8^3t | | 10x=170−7x | | -8x+9;x=7 | | 8t^2=3-10t | | x2+3x;x=7 | | 2(x+30)=75 | | P(x)=-10×^2+3500x-66000=-10(x-20)(x-330) | | 3.8x-(-1-9.7x)=2.6+ | | x/3+5=x/2 | | -30+5p=3+2(1+6p) | | 100x-35x=325 | | y+4y-12y=0 | | 11-6x=-8x+7 | | y=X+(X*0.25) | | 3200=100x*2x | | C=3n+10 | | -4(5t-2)+3t=2t-2 | | 5+t=11t-10(t+7) | | -8/9y=-5 | | 6(n-1)+4n=2n-2 | | 2/3x+10=46/3 | | 54=r3 | | x²-6x+12=0 | | -8x+9;x=-4 | | H=60t-16^2 | | 1/2=4/3+1/x | | x^2+x-820=0 | | 1/2=4/3+x |